KEY STAGE 1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100 .

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2-digit number. Another important conceptual tool is the ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10 s and 1s. Children may extend this to adding by partitioning numbers into 10 s and 1 s .

Multiplication and Division: Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.

Fractions: Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Using place value

Count in 1 s
e.g. $45+1$

Count in 10 s
e.g. $45+10$ without counting on in 1 s

34	35	36
44		0
54	55	56

Add 10 to any given 2-digit number

Counting on

Count on in 1s
e.g. $8+3$ as 8, 9, 10, 11

Add, putting the larger number first Count on in 10 s
e.g. $45+20$ as $45,55,65$

Number bonds ('story' of 5, 6, 7, 8, 9 and 10)
Count on in 1s from a given 2-digit number
Add two 1-digit numbers
Add three 1-digit numbers, spotting doubles or pairs to 10
Count on in 10s from any given 2-digit number
Add 10 to any given 2-digit number
Use number facts to add 1-digit numbers to
2-digit numbers
e.g. Use $4+3$ to work out $24+3,34+3$

Add by putting the larger number first

Year 1
Additional information
Using number facts
'Story' of $4,5,6,7,8$ and 9
e.g. $7=7+0,6+1,5+2,4+3$

Number bonds to 10
e.g. $5+5,6+2,7+3,8+2,9+1,10+0$

$4+6=10$

Use patterns based on known facts when adding e.g. $4+3=7$ so we know $24+3,44+3,74+3$

Year 1

Additional information

Using place value

Count back in 1s
e.g. Know 53-1

Count back in 10s
e.g. Know 53-10 without counting back in 1 s
$\begin{array}{lll}32 & 33 & 34\end{array}$
$42 \quad 43 \quad 44$
$52 \quad 53 \quad 54$
Taking away
Count back in 1s
e.g. 11 - 3 as 11, 10, 9, 8
e.g. $14-3$ as $14,13,12,11$

Count back in 10 s
e.g. 53-20 as 53, 43, 33

Number bonds ('story' of 5, 6, 7, 8, 9 and 10)
Count back in 1s from a given 2-digit number
Subtract one 1-digit number from another Count back in 10s from any given 2-digit number Subtract 10 from any given 2-digit number
Use number facts to subtract 1-digit numbers from 2-digit numbers e.g. Use 7-2 to work out 27-2, 37-2

Overview of Strategies and Methods - Year 1

Year 1

Additional information

Using number facts
'Story' of 4, 5, 6, 7, 8 and 9
e.g. 'Story' of 7 is $7-1=6,7-2=5,7-3=4$

Number bonds to 10
e.g. $10-1=9,10-2=8,10-3=7$

Subtract using patterns of known facts
e.g. $7-3=4$ so we know $27-3=24,47-3=44,77-3=74$

Year 1

Counting in steps ('clever' counting)
Count in 2s

Mental Multiplication

Count in 10 s									$\stackrel{\text { A. }}{\rightarrow}$
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90

Additional information

Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Begin to say what three 5 s are by counting in 5 s , or what four 2 s are by counting in 2s, etc.
Double numbers to 10

Year 1

Doubling and halving

Find doubles to double 5 using fingers
e.g. double 3
Cles)

Year 1

Year 1

Counting in steps ('clever’ counting)

Count in 2s

$$
\begin{array}{llllllllll}
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

Count in 10s

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 100 \\
\hline 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
\hline 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
\hline 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
\hline 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\hline
\end{array}
$$

Doubling and halving
Find half of even numbers up to 12 , including realising that it is hard to halve an odd number

Additional information

Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing
Begin to use visual and concrete arrays or
'sets of' to find how many sets of a small number make a larger number

	Year 1	
Grouping Begin to use visual and concrete arrays and 'sets of' objects to find the answers to questions such as 'How many towers of three can 1 make with twelve cubes?'		
Sharing Begin to find half of a quantity using sharing e.g. find half of 16 cubes by giving one each repeatedly to two children		

